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A Genomewide Search Finds Major Susceptibility Loci for Gallbladder
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Gallbladder disease (GBD) is one of the major digestive diseases. Its risk factors include age, sex, obesity, type 2
diabetes, and metabolic syndrome (MS). The prevalence of GBD is high in minority populations, such as Native
and Mexican Americans. Ethnic differences, familial aggregation of GBD, and the identification of susceptibility
loci for gallstone disease by use of animal models suggest genetic influences on GBD. However, the major suscep-
tibility loci for GBD in human populations have not been identified. Using ultrasound-based information on GBD
occurrence and a 10-cM gene map, we performed multipoint variance-components analysis to localize susceptibility
loci for GBD. Phenotypic and genotypic data from 715 individuals in 39 low-income Mexican American families
participating in the San Antonio Family Diabetes/Gallbladder Study were used. Two GBD phenotypes were defined
for the analyses: (1) clinical or symptomatic GBD, the cases of cholecystectomies due to stones confirmed by
ultrasound, and (2) total GBD, the clinical GBD cases plus the stone carriers newly diagnosed by ultrasound. With
use of the National Cholesterol Education Program/Adult Treatment Panel III criteria, five MS risk factors were
defined: increased waist circumference, hypertriglyceredemia, low high-density lipoprotein cholesterol, hypertension,
and high fasting glucose. The MS risk-factor score (range 0–5) for a given individual was used as a single, composite
covariate in the genetic analyses. After accounting for the effects of age, sex, and MS risk-factor score, we found
stronger linkage signals for the symptomatic GBD phenotype. The highest LOD scores (3.7 and 3.5) occurred on
chromosome 1p between markers D1S1597 and D1S407 (1p36.21) and near marker D1S255 (1p34.3), respectively.
Other genetic locations (chromosomes 2p, 3q, 4p, 8p, 9p, 10p, and 16q) across the genome exhibited some evidence
of linkage (LOD �1.2) to symptomatic GBD. Some of these chromosomal regions corresponded with the genetic
locations of Lith loci, which influence gallstone formation in mouse models. In conclusion, we found significant
evidence of major genetic determinants of symptomatic GBD on chromosome 1p in Mexican Americans.
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Gallbladder disease (GBD) is a common, economically
burdensome digestive disease in the United States (Sand-
ler et al. 2002). An estimated 20 million Americans are
affected with GBD, and 1700,000 cholecystectomies are
performed every year (Hall and Lawrence 1998; Ever-
hart et al. 1999; Lawrence and Hall 1999; Diehl 2000).
GBD prevalence is high in some minority populations
in the United States, including Native and Mexican
Americans (Weiss et al. 1984a; Diehl and Stern 1989;
Everhart et al. 2002; Méndez-Sánchez et al. 2004). Gall-
stones composed of cholesterol (cholelithiasis) are the
common manifestations of GBD in Western countries,
including the United States (Diehl et al. 1994; Nakeeb
et al. 2002; Paigen and Carey 2002). Most people with
gallstones, however, remain asymptomatic, or silent,
through their lifetimes; only ∼10%–50% of individuals
eventually develop symptoms (Paigen and Carey 2002).

The significant risk factors associated with GBD are
age, female sex, obesity (especially central obesity), lip-
ids, diet, parity, type 2 diabetes (T2DM), medications,
and Mexican American ethnicity (Diehl 1991; Hanis et
al. 1993; Misciagna et al. 1996; Everhart et al. 1999;
Duggirala et al. 1999b; Paigen and Carey 2002; Lee
2004; Méndez-Sánchez et al. 2004). Rapid weight loss,
smoking, and sedentary lifestyle were also identified as
risk factors for GBD (Everhart 1993; Sahi et al. 1998;
Leitzmann et al. 1999). The association between dia-
betes and GBD is controversial; some have suggested
that hyperinsulinemia rather than diabetes may play a
major role in the etiology of GBD (Haffner et al. 1993;
Everhart 1995; Diehl 2000; Ruhl and Everhart 2000).
Also, it has been shown that duration of diabetes and
blood sugar control are associated with impaired gall-
bladder function (Haffner et al. 1993; Yang et al. 2002).
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There is increasing evidence that GBD is strongly related
to metabolic syndrome (MS) and/or its major compo-
nents, such as hyperinsulinemia, dyslipidemia, and ab-
dominal adiposity (Boland et al. 2002; Grundy 2004;
Tsai et al. 2004). The contribution of bacteria to the
occurrence of gallstones has become an interesting area
of research as well (Swidsinski and Lee 2001; Silva et
al. 2003; Maurer et al. 2005).

The pathogenesis of cholesterol gallstones is unclear.
Factors such as hypersecretion of hepatic cholesterol,
supersaturation of bile with cholesterol, cholesterol crys-
tal nucleation time, and hypomotility of the gallbladder
appear to influence the formation of gallstones (Pom-
eranz and Shaffer 1985; Carey 1993; Portincasa et al.
1995; Méndez-Sánchez et al. 1996; Paigen and Carey
2002; Portincasa et al. 2003). Thus, the pathobiological
mechanisms that underlie the phenotypic expression of
GBD appear to be rather complex, and one or more
defects could occur in genes that play critical roles in
the diverse pathways leading to cholesterol gallstone
formation.

It is generally thought that GBD is a complex, mul-
tifactorial disease influenced by genetic and environ-
mental factors and their interactions. The available in-
formation based on family data, albeit limited, suggests
that genetic factors play a key role in the development
of GBD (Kesaniemi et al 1989; Sarin et al. 1995; Dug-
girala et al. 1999b; Nakeeb et al. 2002; Kosters et al.
2003). Using data from a large Swedish study of 43,141
twin pairs, Katsika et al. (2005) determined that genetic
influences are major contributors to the variation in
symptomatic gallstone disease. According to this study,
genetic factors accounted for 25%, shared environmen-
tal factors for 13%, and unique environmental factors
for 62% of the phenotypic variance among twins. In
addition, varying prevalence on the basis of ethnicity
has been considered to be indirect evidence of the genetic
determination of GBD (Weiss et al. 1984a; Diehl and
Stern 1989; Everhart et al. 2002; Paigen and Carey
2002; Méndez-Sánchez et al. 2004). In fact, Weiss et al.
(1984b) proposed that there might be a genetic suscep-
tibility association among complex diseases such as
GBD, diabetes, and obesity, which cluster to form a
“New World Syndrome” in populations with Native
American ancestry. Aside from these observations in hu-
man populations, several mouse models identified var-
ious Lith (i.e., lithogenic) loci influencing gallstone for-
mation (Khanuja et al. 1995; Paigen et al. 2000; Lam-
mert et al. 2001; Hillebrandt et al. 2003; Kosters et al.
2003; Lyons et al. 2003, 2005).

Major susceptibility loci for GBD in human popula-
tions have not yet been identified. Therefore, we con-
ducted a genetic epidemiologic investigation of GBD,
using data from complex Mexican American families,
as part of the San Antonio Family Diabetes/Gallbladder

Study (SAFDGS). Using a 10-cM map and ultrasound-
based information on GBD occurrence, we employed a
variance-components linkage technique, using a liability
model to map susceptibility genes for GBD in the Mex-
ican American population.

Subjects and Methods

SAFDGS

Demographic and other phenotypic information was col-
lected from 741 individuals drawn from 39 large Mexican
American families that were enrolled in the San Antonio Fam-
ily Gallbladder Study (SAFGS), a follow-up and extension of
the San Antonio Family Diabetes Study (SAFDS). These studies
are collectively referred to as the SAFDGS. The recruitment
for the SAFGS was conducted between 1998 and 2001. Of
these 741 individuals, 476 had been examined previously at
baseline and/or follow-up in the SAFDS and were members of
the 31 original SAFDS families (Duggirala et al. 1999a, 2001).
An additional 265 individuals were recruited into the SAFGS;
of these, 152 participants were newly recruited members of
the original 31 SAFDS families, and 113 were members of 8
newly recruited SAFGS families. Recruitment of the new
SAFGS families followed the same guidelines as were used
originally in the SAFDS recruitment (Duggirala et al. 1999a).
Probands were recruited from a random sample of low-income
Mexican American individuals who had been identified in the
earlier San Antonio Heart Study as having T2DM. All of the
probands’ first-, second-, and third-degree relatives aged �18
years were invited to participate in the study. Of the total 646
individuals who had taken part in the earlier SAFDS exami-
nations, 54 died before SAFGS recruitment began. Of the 592
SAFDS survivors, 476 (∼80%) individuals participated in the
present project. The Institutional Review Board of the Uni-
versity of Texas Health Science Center at San Antonio ap-
proved all procedures, and all subjects gave written informed
consent.

Phenotype Data.—For each individual, a detailed medical
history of previous gallbladder problems, including cholecys-
tectomy, was obtained. Ultrasound examinations were con-
ducted at the Frederic C. Bartter General Clinical Research
Center (GCRC), South Texas Veterans Healthcare System, Au-
die L. Murphy Division, in San Antonio. Ultrasound is widely
regarded as the test of choice for screening for gallstones be-
cause of its high sensitivity and specificity in detecting gall-
stones (Rosenthal et al. 1994). Each participant was asked to
fast for a minimum of 12 h before the ultrasound scan. Gall-
bladder ultrasonograms were obtained using the GCRC’s ATL
3000 ultrasound imaging unit (3.5 or 5.0 MHz transducer
frequencies). Each ultrasonogram was performed by one of
three technicians trained in screening gallbladder ultrasound,
under supervision by an experienced radiologist. In each ex-
amination, the protocol included videotaped documentation
of the gallbladder viewed in longitudinal and/or transverse
views. Each view was obtained in supine and lateral positions,
with both subcostal and intercostal approaches. To verify the
technicians’ work as part of ongoing quality control, ∼20%
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of the sonograms were chosen for review and verification by
the radiologist.

A participant was classified as having gallstones when one
of the following three diagnostic criteria had been fulfilled: (1)
gallbladder lumen with mobile nodular or dependent layering
echoes that exhibited posterior acoustic shadowing, (2) gall-
bladder with hyperechoic shadowing material filling the gall-
bladder lumen with an appearance of the WES triad (i.e., the
gallbladder wall, the echo of the stone, and the acoustic
shadow—a specific ultrasonographic sign of gallstones used to
make a reliable diagnosis of cholelithiasis [MacDonald et al.
1981; Rybicki 2000]), or (3) a history of cholecystectomy with
no gallbladder lumen but with a scar consistent with a history
of cholecystectomy. When the gallbladder lumen was found to
have no echoes, the subject was considered unaffected. Because
the reasons for cholecystectomy of 14 individuals were found
to be ambiguous, we obtained medical records of these indi-
viduals for review by two physicians, to determine the indi-
cations for surgery. Of the 14 cases reviewed, GBD status was
determined for 9 individuals. Individuals with cholecystecto-
mies in the absence of gallstones were considered unaffected.

Of the 741 examined individuals, the GBD status of 8 in-
dividuals was indeterminable either because of a lack of doc-
umentation about whether prior cholecystectomy had been due
to stones or because of the uncertainty of the current diagnosis
of stones. Hence, their phenotypes were considered to be un-
known. The pedigree data used for this study, however, con-
tained 715 individuals with GBD data available, because 18
unrelated individuals (mainly spouses) were excluded from the
analyses. Two GBD phenotypes were defined for the analyses:
(1) clinical GBD, the cases in which participants self-reported
cholecystectomies due to symptomatic stones and the chole-
cystectomy was subsequently confirmed by ultrasound at the
time of the study examination, and (2) total GBD, the clinically
diagnosed cases plus asymptomatic persons found to have gall-
stones on ultrasound.

For the SAFGS, a variety of metabolic, hemodynamic, an-
thropometric, and demographic variables were collected, by
use of standard procedures, at the GCRC Laboratory. Blood
samples were obtained after 12-h fasts, for the assessment of
various metabolic traits, including fasting glucose concentra-
tions, and they were collected again 2 h after a standardized
oral glucose load, for the assessment of plasma glucose. T2DM
was diagnosed in accordance with the 1999 criteria of the
World Health Organization (World Health Organization
1999). Participants who did not meet these criteria but who
reported that they were under treatment with either oral an-
tidiabetic agents or insulin and who gave a history of diabetes
were also considered to have T2DM.

Given the complex relationships between the components
of MS (e.g., hyperglycemia, dyslipidemia, and obesity) and
GBD, we used the MS risk-factor score as a single, composite
covariate in all our GBD genetic analyses. MS was defined in
accordance with the National Cholesterol Education Program/
Adult Treatment Panel III (NCEP/ATPIII) recommendations
(Expert Panel on Detection, Evaluation, and Treatment of High
Blood Cholesterol in Adults 2001). The NCEP/ATPIII defini-
tion requires the presence of at least three of the following five
risk factors: increased waist circumference (1102 cm in men

and 188 cm in women), hypertriglyceredemia (�150 mg/dl),
low high-density lipoprotein (HDL) cholesterol (!40 mg/dl in
men and !50 mg/dl in women), hypertension (�130/85 mm
Hg or people who were on hypertensive medication with nor-
mal blood pressure values), and high fasting glucose (�110
mg/dl or a diagnosis of T2DM, as defined above). For the
genetic analyses, however, the total number of MS risk factors
(range 0–5) for a given individual was considered as a covar-
iate. Given the requirement of common MS risk-factor infor-
mation for each of the individuals, ∼4.5% of the total 715
individuals had missing information for MS risk factors. The
MS risk-factor score thus defined is significantly heritable
( , ) in our data (S. Puppala and R.2h p 39 � 7% P ! .0001
Duggirala, unpublished data). Incorporation of such covariates
is expected to increase power to localize disease-specific sus-
ceptibility gene(s) by removing some of the background noise
due to the phenotypic correlations among the related traits
(e.g., see Arya et al. 2001).

Genotype Data, Genetic Map, and Estimation of Identity-
by-Descent (IBD) Matrices.—A 10-cM genome scan was per-
formed by the Center for Inherited Disease Research (CIDR)
at Johns Hopkins University on ∼900 SAFDGS participants.
DNA was prepared from lymphocytes for genotyping. The
CIDR performed the genome scan, using automated fluores-
cent microsatellite analysis; its marker set was composed pri-
marily of trinucleotide and tetranucleotide repeats across the
genome. In the CIDR map, there were no gaps 118 cM, and
the average marker heterozygosity was 0.76. The CIDR genetic
map is similar to the genetic map provided by the Center for
Genetics at Marshfield Medical Research Foundation. For the
present study, we used CIDR genotypic data on 382 highly
polymorphic autosomal markers. We used the genotypic in-
formation to check for genotyping errors and to verify pedigree
relationships among our study participants. The CIDR rou-
tinely checked for genotype errors and possible pedigree re-
lationship errors. However, as an added precaution, the mi-
crosatellite marker data were used to further correct potential
errors. The program PREST (McPeek and Sun 2000) was used
to resolve pedigree discrepancies. The data were checked for
Mendelian inconsistencies by use of the PEDSYS (Dyke 1996)
programs INFER and GENTEST, to eliminate typing errors.
If the discrepancies continued to exist, the program SimWalk2
(Sobel and Lange 1996; Sobel et al. 2002), which used Markov
Chain–Monte Carlo and simulated annealing algorithms to
assign probabilities of mistyping to each genotype, was used
to make decisions about the appropriate genotypes to blank
(exclude). SimWalk2 detects and blanks genotypes that gen-
erate unlikely double recombinants that inflate map distances.
To resolve potential double-recombinant problems, all geno-
types with an error probability of �0.25 were blanked. Over-
all, the blanking rate for errors was !0.5% of the total number
of genotypes.

Maximum-likelihood techniques that account for pedigree
structure were used to estimate allele frequencies. Frequency
estimates obtained using samples containing related individ-
uals can be significantly biased unless pedigree structure is
taken into account (Boehnke 1991). For each genetic marker
locus, the estimates of the allele frequencies and their SEs were
obtained using SOLAR (Almasy and Blangero 1998). We con-
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Table 1

Clinical Characteristics of the Study Participants by GBD Status

Participants and Variables Affected Unaffected

Clinical GBDa:
Female (%) 81 57
Male (%) 19 43
Mean age (years � SD) 54 � 16 43 � 16
T2DM (%) 46 24
MSb (%) 64 39
Mean waist circumference (mm � SD) 1,060 � 181 985 � 163
Mean BMI (kg/m2 � SD) 33 � 8 31 � 7

Total GBDc:
Female (%) 75 55
Male (%) 25 45
Mean age (years � SD) 52 � 17 42 � 15
T2DM (%) 42 21
MSb (%) 59 37
Mean waist circumference (mm � SD) 1,040 � 175 979 � 162
Mean BMI (kg/m2 � SD) 32 � 7 30 � 7

a For affected persons, ; for unaffected persons, .n p 104 n p 610
b As defined by NCEP/ATPIII criteria.
c For affected persons, ; for unaffected persons, .n p 202 n p 513

structed sex-averaged genetic maps, using the programs
MultiMap and CRI-MAP (Lander and Green 1987; Matise et
al. 1994). Locus-specific IBDs were calculated using the pro-
gram SOLAR (Almasy and Blangero 1998), and multipoint
IBD matrices were estimated using Markov Chain–Monte
Carlo methods implemented in the program Loki (Heath
1997).

After our initial clinical GBD linkage analysis, we performed
additional marker genotyping at seven chromosomal regions
(chromosomes 1, 2, 4, 9, 10, 11p, and 11q) of interest. In
total, 31 additional markers were typed, and ∼4 markers were
typed on average for a given genetic location. In brief, DNA
was extracted from white blood cells by use of proteinase K
digestion/phenol extraction and alcohol precipitation in a
semiautomated fashion on an ABI 341 RNA/DNA extractor.
Genotyping used PCR of locus-specific microsatellite markers.
The 31-marker genotypic data were checked for mistyping
errors by use of the procedures described earlier, discrepancies
were checked in the laboratory for mistyping, and marker ge-
notypes for discrepant individuals were either corrected or
blanked before an analysis. The blanking rate for errors was
∼1% of the total number of genotypes. Thus, our present link-
age analyses were based on a data set that contained infor-
mation from 413 microsatellite markers.

Variance-Components Linkage Analysis

The genetics of GBD were evaluated with a variance-com-
ponents approach using the genetic information contained in
the pedigrees (Hopper and Mathews 1982; Amos 1994; Al-
masy and Blangero 1998). This approach is based on speci-
fying variances or covariances between relatives as a function
of their genetic relationships. An extension of the variance-
components approach to a threshold model (Duggirala et al.
1997; Burke et al. 2000) was used to analyze the dichotomous
trait, GBD. According to this approach, it is assumed that an
individual belongs to a specific disease category if an under-
lying, genetically determined risk or liability exceeds a certain
threshold, T, on a normally distributed liability curve. The
liability is assumed to have an underlying multivariate normal
distribution with equal unit variances of liability both in the
general population and in relatives of affected individuals. The
correlation in liability between pairs of individuals is estimated
using the affected status of unrelated individuals and various
categories of relatives. Because the calculation of the likelihood
for this multifactorial model requires high dimensional inte-
gration, we evaluated it approximately, using the Mendell-
Elston algorithm (Mendell and Elston 1974). The variance
components—such as heritability attributed to the suscepti-
bility locus and heritability attributed to the residual additive
genetic effects—and covariate effects for discrete traits were
estimated in likelihood terms, and hypothesis tests were per-
formed using likelihood ratio tests (Self and Lang 1987; Dug-
girala et al. 1999a). To obtain LOD scores, the ln likelihood
values were converted into values of log10. The variance-com-
ponents procedure for discrete traits was implemented in the
computer program SOLAR. Because the SAFDGS families
were ascertained through diabetic probands, as a conservative
approach, all analyses were performed using SOLAR to correct
for the ascertainment by conditioning the likelihood for the

family data on the phenotype (i.e., GBD) of the proband
(Boehnke and Lange 1984).

Results

The prevalence of clinical GBD and total GBD was 15%
and 28%, respectively. As can be seen from table 1,
∼46% of the individuals affected with clinical GBD also
had T2DM, and ∼42% of all subjects with total GDB
were found to have T2DM. The GBD phenotypes were
found to cluster more with MS. Of the individuals af-
fected with clinical GBD, ∼64% also had MS, and ∼59%
of total GDB-affected subjects were found to have MS
(table 1). Prevalence rates of both T2DM and MS in
unaffected individuals were low relative to those found
in affected individuals. The occurrence of both clinical
GBD and total GBD was higher in women than in men,
and the affected individuals were ∼10 years older on
average than the unaffected individuals. Also, the af-
fected individuals were obese, as measured by BMI or
waist circumference, compared with the unaffected in-
dividuals (table 1).

Heritabilities

Before linkage analyses were conducted, the discrete
phenotypes—clinical and total GBD—were subjected
to a variance-components technique using a threshold
model to quantify the respective proportions of variance
that were attributable to additive genetic factors (h2)
(table 2). This analytical procedure used data from both
affected and unaffected individuals. Although GBD data
were available for 715 individuals (table 1), the require-
ment of common covariate information for each of the
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Table 2

Heritabilities (h2) of Clinical and Total GBD Phenotypes
by Data Set

Data Set and Phenotype N h2 � SE P

Variance
Explained

by Covariatesa

(%)

Set 1b:
Clinical GBD 682 64 � 15 !.0001 12
Total GBD 683 26 � 10 .0008 13

Set 2c:
Clinical GBD 489 77 � 24 .0007 7
Total GBD 491 53 � 18 .0004 9

a Age, sex, and MS risk-factor score (0–5) were included as covar-
iates, and the estimates of variance explained by covariates were based
on Kullback-Leibler R2 values. The five MS risk factors, as defined by
NCEP/ATPIII criteria, are increased waist circumference, hypertri-
glyceredemia, low HDL cholesterol, hypertension, and high fasting
glucose.

b Total sample, including diabetic and nondiabetic individuals.
c Nondiabetic individuals only.

individuals resulted in slightly reduced sample sizes (ta-
ble 2). The GBD phenotypes were subjected to genetic
analyses using data from the total sample (i.e., diabetic
and nondiabetic individuals) and the subsample of non-
diabetic individuals. For convenience, these data sets are
called set 1 (total sample) and set 2 (nondiabetics only).

In set 1 data, after adjusting for the significant effects
of age ( ), sex ( ), and MS risk-factorP ! .0001 P ! .0001
score ( ), we detected high heritability for clin-P p .0240
ical GBD ( ; ). However, the heri-2h p 64% P ! .0001
tability for total GBD ( ; ) was es-2h p 26% P p .0008
timated to be low, after adjustment for the covariate
effects of age ( ), sex ( ), and MS risk-P ! .0001 P ! .0001
factor score ( ) (table 2). The covariates ex-P p .0002
plained 12% and 13% of total phenotypic variation in
clinical and total GBD, respectively. In set 2 data, the
heritability was detected to be high for clinical GBD
( ; ), after accounting for the co-2h p 77% P p .0007
variate effects of age ( ), sex ( ), andP p .0077 P p .0022
MS risk-factor score ( ); it was moderate forP p .0870
total GBD ( ; ), after correction for2h p 53% P p .0004
the effects of age ( ), sex ( ), and MSP p .0005 P ! .0001
risk-factor score ( ). The covariates explainedP p .0047
7% and 9% of total phenotypic variation in clinical and
total GBD phenotypes, respectively. Overall, the high
heritabilities for clinical GBD in both sets suggest that
the clinical or symptomatic GBD may be more infor-
mative for genetic analyses, perhaps because of the se-
vere nature of the clinical GBD phenotype. In fact, our
subsequent linkage analyses yielded stronger linkage sig-
nals with the clinical GBD phenotype than with the total
GBD phenotype (tables 3 and 4). Hence, mainly the
linkage results relating to clinical GBD in set 1 are dis-
cussed in the present article.

Multipoint-Linkage Findings

After the estimation of heritabilities, we performed
multipoint linkage analyses of GBD phenotypes. In set
1, after correction for age, sex, and MS risk-factor score,
potential evidence of linkage (i.e., LOD scores �1.2) of
clinical GBD was found at nine genetic locations rep-
resenting eight chromosomes (fig. 1 and table 3). Poten-
tial linkages are considered as those genetic locations
across the genome with nominal P values of �.01 (i.e.,
LOD scores �1.175). The strongest evidence of linkage
(LOD p 3.7; ) of clinical GBD occurred atP p .00002
a genetic location between markers D1S1597 and
D1S407 on chromosome 1p36.21 (set 1) (table 3 and
figs. 1 and 2). The 1-LOD–unit support interval covers
an ∼20-cM (or ∼9-Mb) chromosomal region between
the markers D1S1612 and D1S3669. We also found
strong evidence of linkage (LOD p 3.5; )P p .00003
near marker D1S255 on chromosome 1p34.3 (set 1)
(table 3 and figs. 1 and 2) for clinical GBD. The 1-LOD–
unit support interval surrounding the linkage peak spans
the ∼16-cM (or ∼11-Mb) chromosomal region between
the markers D1S1622 and D1S3721. These two linkage
peaks on chromosome 1p are separated by the ∼33-cM
(or ∼23-Mb) chromosomal region.

Suggestive evidence of linkage (LOD near or 11.9) of
clinical GBD was found on chromosomes 10p near
marker D10S550 (LOD p 2.3), 9p near marker
D9S2169 (LOD p 2.0), 16q near marker D16S3096
(LOD p 1.8), and 2p near marker D2S1360 (LOD p
1.8) (set 1) (table 3 and fig. 1). However, for total GBD,
only two genetic locations were found to exhibit po-
tential evidence of linkage (LOD �1.2) (table 3). Given
that the heritabilities for GBD phenotypes were found
to be moderate to high in set 2, multipoint linkage anal-
yses were performed using the set 2 data (table 4). The
strongest evidence of linkage (LOD p 3.4) of clinical
GBD occurred at a genetic location between markers
D1S1679 and D1S1677 on chromosome 1q23.3,
whereas the highest LOD score of 2.7 for total GBD
occurred at a genetic location near marker D11S4464
on chromosome 11q (table 4).

Discussion

In this study, to our knowledge the first in a human
population to use a genome-scan and linkage approach,
we have found strong evidence of a major locus near
markers D1S1597 and D1S407 on chromosome
1p36.21 that influences variation in symptomatic or clin-
ical GBD in the Mexican American population, after
accounting for the significant covariate influences of age,
sex, and MS risk factors. The evidence of linkage of
clinical GBD to the chromosome 1p36.21 region is sig-
nificant at the level of a genomewide scan (Lander and
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Table 3

Chromosomal Regions Potentially Linked (LOD Scores �1.2) to Clinical and Total GBD
Phenotypes in the Total Sample of Diabetic and Nondiabetic Individuals (Set 1)

MARKER REGION

DISTANCE FROM p-TER

(cM)a

CHROMOSOMAL

LOCATION

MAXIMUM LOD SCOREb

Clinical GBD Total GBD

D1S1597–D1S407 34 1p36.21 3.7 …
D1S255 65 1p34.3 3.5 …
D2S1360 38 2p24.2 1.8 …
D3S2427–D3S1262 188–201 3q26.31–q27.3 1.2 …
D4S403 26 4p15.33 1.6 …
D8S1130 22 8p23.1 1.4 …
D9S2169 14 9p24.1 2.0 …
D10S550 49 10p12.2 2.3 1.2
D15S643 52 15q22.2 … 1.3
D16S3096 99 16q23.1 1.8 …

NOTE.—Results are based on multipoint-linkage analyses.
a Marshfield data (Kosambi cM), for the purpose of comparison.
b Age, sex, and MS risk factors were considered as covariates.

Kruglyak 1995). Because our data and that of others
(e.g., Méndez-Sánchez et al. 2005) have revealed close
association between GBD and MS (i.e., defined follow-
ing NCEP/ATPIII criteria), the GBD phenotypes are ad-
justed for the effects of MS risk factors in our analyses.
Another genetic location near marker D1S255 (chro-
mosome 1p34.3) also exhibited strong evidence of link-
age to clinical GBD, and it is also significant at the level
of a genomewide scan. In consideration of the issues
relating to localization, the two linkage peaks may cor-
respond to the same susceptibility locus (Hauser and
Boehnke 1997; Roberts et al. 1999; Hsueh et al. 2001a).
However, the fact that they are ∼33 cM (or ∼23 Mb)
apart from each other suggests that such a scenario is,
effectively, very unlikely. Importantly, the 1-LOD–unit
support intervals surrounding the two linkage peaks on
chromosome 1p in our study approximately represent
the cytogenetic locations 1p36.23-p36.13 and 1p35.3-
p34.2. Such a scenario of no overlapping between the
1-LOD support intervals is suggestive of the occurrence
of two loci on chromosome 1p.

In the absence of previous GBD genome-scan/linkage
data in humans for comparison, we reviewed the liter-
ature for linkage studies of phenotypes correlated with
GBD that implicated chromosome 1p to harbor suscep-
tibility genes for such comorbid conditions. As shown
in table 5, several studies have implicated a broad, over-
lapping region on chromosome 1p (i.e., 1p36.32-p32)
as containing susceptibility loci for disease conditions
that have relevance to GBD, especially the phenotypes
related to the lipid/lipoprotein metabolism. In fact, using
our data, we found weak evidence of linkage of total
cholesterol and low-density lipoprotein (LDL) choles-
terol near the two locations linked to GBD on chro-
mosome 1p (table 5). Such linkage profiles of correlated
phenotypes on chromosome 1p suggest the possibility

of more than one susceptibility locus that could corre-
spond to the findings reported in table 5.

The two distinct symptomatic GBD-linked regions on
chromosome 1p, together with their flanking chromo-
somal regions, encompass a number of positional can-
didate genes, including TNFR2 (tumor necrosis factor
receptor 2, 1p36.33-p36.2 [MIM 191191]), also called
TNFRSF1B (tumor necrosis factor receptor subfamily,
member 1B), SHP (small heterodimer partner, 1p36.1
[MIM 604630]), also called SHP1 or NROB2 (nuclear
receptor subfamily 0, group B, member 2), and ARH
(autosomal recessive hypercholesterolemia, 1p36-p35
[MIM 603813 and MIM 605747]). As shown in table
5, several studies reported that genetic locations near the
TNFR2 gene are linked to obesity-related phenotypes
(Stone et al. 2002; Liu et al. 2004). In another Mexican
American family study, the marker region D1S1597 was
found to be linked with the body size–adiposity factor
(Cai et al. 2004). There is evidence that the genetic var-
iation in and near TNFR2 could relate to familial com-
bined hyperlipidemia-, hypertension-, and obesity-re-
lated phenotypes (Geurts et al. 2000; Glenn et al. 2000;
Puga et al. 2005). Also, genetic variation in this gene
was found to be associated with obesity phenotypes and
insulin resistance (Fernandez-Real et al. 2000). The au-
tosomal recessive hypercholesterolemia (ARH) has been
found to be influenced by different loci, including the
one mapped to chromosome 1p36.1-p35 (Eden et al.
2001; Al-Kateb et al. 2002). Garcia et al. (2001) cloned
the ARH gene, which is located on chromosome 1p35
and encodes a putative LDL-receptor adapter protein.

The SHP gene (1p36.1) is located very close to our
genetic region of interest on chromosome 1p36, which
has striking functional relevance to GBD. There is close
correspondence between this region and the chromo-
somal region in the mouse that harbors cholesterol gall-
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Table 4

Chromosomal Regions Potentially Linked (LOD Scores �1.2) to Clinical and Total GBD Phenotypes
in Nondiabetic Individuals (Set 2)

MARKER REGION

DISTANCE FROM p-TER

(cM)a

CHROMOSOMAL

LOCATION

MAXIMUM LOD SCOREb

Clinical GBD Total GBD

D1S1679–D1S1677 171–176 1q23.3 3.4 2.1
D2S2976–D2S1780 4 2p25.3 1.6 1.6
D2S1360 38 2p24.2 2.7 …
D3S2409–D3S1600 71–86 3p21.31–p14.2 1.7 …
D3S2406 103 3p13 1.4 1.8
D3S2459–D3S3045 119–124 3q12.3–q13.12 2.1 …
D3S1744–D3S1763 161–177 3q24–q26.1 1.3 …
D4S1551 39 4p15.2 1.7 …
D4S2623 114 4q25 1.1 1.7
D6S1035–D6S1277 165–173 6q26 1.4 1.3
D7S1804 137 7q32.3 … 1.6
D9S2169 14 9p24.1 2.6 …
D9S922 80 9q21.31 1.4 …
D9S1786 104 9q22.32 1.9 …
D10S2325 33 10p13 1.5 …
D10S550 49 10p12.2 … 1.7
D11S2000 101 11q22.3 2.0 2.6
D11S4464 123 11q24.1 … 2.7
D18S542 or AFM036ya1 41 18p11.21 2.2 1.6

NOTE.—Results are based on multipoint-linkage analyses.
a Marshfield data (Kosambi cM), for the purpose of comparison.
b Age, sex, and MS risk factors were considered as covariates.

stone–susceptibility locus Lith 8 (Wittenberg et al. 2003)
(table 6). A positional candidate gene at the Lith 8 locus
is SHP. SHP is an atypical nuclear receptor, a non-DNA
binding protein, which plays a critical role in cholesterol/
bile acid homeostasis (Kerr et al. 2002; Bhalla et al.
2004; Frank et al. 2005). SHP has been reported to
repress the transcriptional activity of various nuclear re-
ceptors, such as retinoid X receptor (RXR), liver recep-
tor homolog-1 (LRH-1), hepatocyte nuclear factor 4a

(HNF-4a), and peroxisome proliferator-activated recep-
tors (Brendel et al. 2002; Bhalla et al. 2004). Since SHP
is a farnesoid X receptor (FXR) target gene and FXR is
a key regulator of bile acid homeostasis, FXR and SHP
play critical roles in feedback mechanisms of bile acid
production (Davis et al. 2002; Schoonjans and Auwerx
2002; Wittenburg et al. 2003; Moschetta et al. 2004).
Increasing levels of bile acids activate FXR, in turn in-
ducing SHP. It, in turn, interacts with LRH-1, thereby
repressing transcription of CYP7A1 and CYP8B1 (Bren-
del et al. 2002; Davis et al. 2002; Schoonjans and Au-
werx 2002; Frank et al. 2005). The hepatic enzymes
cholesterol 7-a hydroxylase (CYP7A1) and sterol 12-a
hydroxylase (CYP8B1) are integral components of the
neutral pathway through which cholesterol is converted
into bile acids (Davis et al. 2002; Bhalla et al. 2004).
Thus, any genetic defects in SHP could have direct func-
tional relevance to GBD. Because SHP modulates the
transcriptional activity of several nuclear receptors, in-
cluding HNF-4a, genetic variants in SHP have been ex-

amined for association with diabetes- and obesity-re-
lated phenotypes (Nishigori et al. 2001; Hung et al.
2003).

Several other chromosomal regions across the genome
exhibited suggestive or potential evidence of linkage to
symptomatic GBD, and some of these findings appear
to have relevance to the chromosomal regions in the
mouse harboring certain Lith loci (table 6). In the ab-
sence of human data to verify our linkage findings, the
rich data for Lith loci (including the Lith 8 locus dis-
cussed above) appear to be helpful for understanding
the potential genetic mechanisms that underlie the GBD
phenotype in human populations. Our suggestive link-
age finding on chromosome 10p12.2 near marker
D10S550 strongly corresponds with the finding of a ma-
jor susceptibility gene for obesity in a French population
(Hager et al. 1998). There is further evidence of a gene
or genes on chromosome 10p that influence obesity-re-
lated phenotypes in other human populations (e.g., Hin-
ney et al. 2000; Comuzzie et al. 2001; Hsueh et al.
2001b; Lindsay et al. 2003). The evidence of linkage
near marker D9S2169 on chromosome 9p24.1 corre-
sponds well with our previous suggestive linkage find-
ings of T2DM and age at diabetes onset on the same
region in the Mexican American population (Duggirala
et al. 1999a). Also, we previously found evidence of a
major gene for HDL cholesterol concentrations at a lo-
cation very close to this region (Arya et al. 2002; also,
see Pajukanta et al. [2003] and Badzioch et al. [2004]).
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Figure 1 Summary of the clinical GBD linkage findings in Mexican Americans based on multipoint linkage analyses (LOD scores �1.2)
of the total data (set 1).

Strong evidence of linkage to serum adiponectin levels
was found on chromosome 9p in the Pima Indian pop-
ulation (Lindsay et al. 2003).

The chromosomal region near marker D2S1360
(2p24.2), where we found suggestive evidence of linkage
to clinical GBD, has been implicated by various other
studies as influencing obesity and lipid phenotypes. For
example, in a Mexican American population, Comuzzie
et al. (1997) found strong evidence of linkage to leptin
levels on chromosome 2p. This is one of the obesity
linkage findings with the strongest and most-frequent
claims of replication (Barsh et al. 2000; Comuzzie 2002;
Loos and Bouchard 2003). Additionally, linkage evi-
dence of such phenotypes as familial combined hyper-
lipidemia (Pajukanta et al. 2003), LDL cholesterol, and
Apo B concentrations (Heijmans et al. 2005) was also
found at this chromosomal region. Our finding on chro-
mosome 16q at marker D16S3096 (16q23.1) strongly
overlaps with that of a major gene for HDL cholesterol
concentrations found on chromosome 16q in a Mexican
American population (Mahaney et al. 2003). Evidence
was also reported for linkage of LDL particle size (Bad-
zioch et al. 2004) and low HDL cholesterol phenotype
(Pajukanta et al. 2003) to similar genetic regions on
chromosome 16q.

Our GBD linkage finding near marker D4S403 on
chromosome 4p15.33 corresponds well with our pre-

viously reported chromosomal region that harbors a ma-
jor gene for obesity in Mexican Americans (Arya et al.
2004); similar findings have been reported by other stud-
ies (Perusse et al. 2001; Deng et al. 2002; Stone et al.
2002). Another Mexican American family study re-
ported that the same marker region harbors a major gene
that influences variation in the compound lipid factor
or phenotype associated with HDL cholesterol and tri-
glyceride concentrations (Cai et al. 2004). An important
positional candidate gene for GBD near the D4S403
region is cholecystokinin A receptor (CCKAR [MIM
118444]) (4p15.2 ). CCKAR plays an important role in
mediating gallbladder contraction and in secreting pan-
creatic enzymes. Several studies have shown that the im-
paired gallbladder motility could be a result of the defect
of the CCKAR (Wang et al. 2004; Ding et al. 2005; Zhu
et al. 2005). Because gallbladder hypomotility is an im-
portant factor in cholesterol gallstone formation, any
defect of the CCKAR gene could relate to our finding
on chromosome 4p15.

As reported in table 4, the analyses based on nondi-
abetic individuals only—albeit with reduced sample
sizes—yielded the strongest evidence of linkage to clin-
ical GBD on chromosome 1q and for linkage of total
GBD on chromosome 11q. The strongest evidence of
linkage to clinical GBD occurred at a location between
markers D1S1679 (1q23.3) and D1S1677 (1q23.3).
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Figure 2 Linkage findings of clinical GBD on chromosome 1p in Mexican Americans, by use of data from the total sample (set 1)

This linkage finding corresponds with previous linkage
findings on chromosome 1q that identified susceptibility
gene(s) for phenotypes including T2DM, MS, or their
related phenotypes (Hanson et al. 1998; Pajukanta et
al. 1998, 2003; Elbein et al. 1999; Reed et al. 2001;
Broeckel et al. 2002; Xiang et al. 2002; Huertas-Váz-
quez et al. 2004; Langefeld et al. 2004; Ng et al. 2004;
Wiltshire et al. 2004). The highest LOD score for total
GBD in nondiabetic individuals occurred at markers
D11S2000 (11q22.3) and D11S4464 (11q24.1) on
chromosome 11q (table 4). Several studies, including our
own, have found evidence of the existence of a locus
near marker D11S4464 that influences susceptibility to
T2DM and obesity or to their related phenotypes (Han-
son et al. 1998; Elbein et al. 1999; Duggirala et al. 2001,
2003a; Atwood et al. 2002; Stone et al. 2002; Arya et
al. 2004).

Several studies have examined the nature of associa-
tions between GBD and genetic variants in candidate
genes. As noted by Katsika et al. (2005), however, poly-
morphisms in the genes apolipoprotein E (APOE), he-
patic phospholipid transporter (ABCB4), and the rate-
limiting enzyme of bile salt synthesis (CPY7A1) appear
to be consistently associated with GBD (e.g., Juvonen et
al. 1993; Bertomeu et al. 1996; Rosmorduc et al. 2003;
Jiang et al. 2004). In the present study, we found no
evidence of linkage of clinical GBD to the chromosomal

region containing the APOE gene. However, there was
weak evidence of linkage of clinical GBD to the chro-
mosomal regions harboring the genes ABCB4 on chro-
mosome 7q (near markers D7S3046 and D7S2204;
LOD p 0.8 in set 1 and LOD p 1.1 in set 2) and
CPY7A1 (near markers D8S1136 and D8S2324; LOD
p 0.7 in set 1 and LOD p 0.5 in set 2) on chromosome
8q.

We performed a preliminary linkage analysis of clin-
ical GBD, using data from a subset of the SAFDGS
( ) and the SAFDS original genome-scan dataN p 349
(Duggirala et al. 2003b), which is different from the
CIDR genome-scan data used for the present study. In
that preliminary study, we identified a location near
marker D11S1984 on chromosome 11p15.5 that sig-
nificantly influences the clinical GBD. Several mucin
genes are located at this chromosomal region. However,
we failed to reconfirm the original clinical GBD linkage
finding at this 11p chromosomal region in the present
study, on the basis of the larger data set (fig. 1), although
there was some weak evidence of linkage at the marker
D11S1984 (LOD p 1.0), on the basis of the two-point
analysis. In addition, we found three chromosomal
regions that exhibited suggestive evidence of linkage to
clinical GBD, including the marker regions D10S245
(chromosome 10p12.1), D6S1035 (chromosome 6q26),
and D8S270 (chromosome 8q13.2-q21.3). Of these



Table 5

Summary of Linkage Findings of the Phenotypes Related to GBD on Chromosome 1p

Phenotype, Marker(s),
and Populationa

Distance from p-ter
(cM)b Chromosomal Location LOD Reference

BMI:
D1S468:

Utah 4 1p36.32 2.5c Stone et al. 2002
Whites 4 1p36.32 1.4 Liu et al. 2004

LDL:
D1S214–D1S228:

Whites 14–30 1p36.31-p36.21 2.4 Elbein and Hasstedt 2002
BMI:

D1S508:
Utah 16 1p36.23 2.2c Stone et al. 2002

TC:
D1S1612–D1S1597:

Mexican Americans 16–30 1p36.23-p36.21 1.3 Present study
LDL:

D1S1612–D1S1597:
Mexican Americans 16–30 1p36.23-p36.21 1.2 Present study

Body size/adiposity:
D1S1597:

Mexican Americans 30 1p36.21 2.5 Cai et al. 2004
GBD:

D1S1597–D1S407:
Mexican Americans 30–34 1p36.21 3.7 Present study

HT:
TNFRSF1B D1S2834:

Australian sib pairs 31 1p36.22-p36.21 3.1 Glenn et al. 2000
FH:

D1S2826–D1S513:
Syrian family 42–60 1p36.13-p36.12 3.1 Al-Kateb et al. 2002

TC:
D1S552–D1S2843:

Twins/parents, Berlin 45–47 1p36.13-p36.12 1.8 Al-Kateb et al. 2002
LDL:

D1S552–D1S2843:
Twins/parents, Berlin 45–47 1p36.13-p36.12 1.9 Al-Kateb et al. 2002

FH:
D1S2725–D1S2787:

Turkish and Asian Indians 49–56 1p36.12-p35.3 5.3 Eden et al. 2001
TC:

D1S1622:
Mexican Americans 57 1p35.3 1.0 Present study

LDL:
D1S1622–D1S255:

Mexican Americans 57–65 1p35.3-p34.3 .5 Present study
LDL-HDL ratio:

D1S233–D1S193:
Whites 61–73 1p35.2-p34.2 2.1 Elbein and Hasstedt 2002

GBD:
D1S255:

Mexican Americans 65 1p34.3 3.5 Present study
FH:

D1S2892–D1S2722:
French families 70–73 1p34.2 3.1 Varret et al. 1999

BMI:
D1S3721:

Old Order Amish 73 1p34.2 …d Platte et al. 2003
FH:

D1S2134–D1S1661:
Utah 76–78 1p33-32 6.8 Hunt et al. 2000

NOTE.—Findings from the present study are shown in bold italics. Some information was adapted from Bossé 2004.
a HT p hypertension; FH p familial hypercholesterolemia; TC p total cholesterol.
b Marshfield distance data (Kosambi cM), used for the purpose of comparison.
c HLOD p heterogeneity LOD.
d Evidence of linkage reported as .P p .009
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Table 6

Correspondence between the Chromosomal Regions Linked to Clinical GBD (Sets 1 and 2) and the Cholesterol Gallstone
Susceptibility Genes (i.e., Lith Loci) Identified by Mouse Models

SOME POSITIONAL CANDIDATE GENESb

PRESENT ARTICLE LITH LOCI/MOUSE MODELSa

Locationc LOD Set Lith Locus Chromosome
Location

(cM)

TNFR2 (1p36.2) 1p36.2 3.7 1 Lith 8 4 60.0
SHP (1p36.1); SCP2 (1p32.3) 1p34.3 3.5 1 Lith 8 4 60.0
APOBd (2p24.1) 2p24.2 2.7 2 Lith 9 17 54.5
POMCd (2p23.3); ABCG5 (2p21); ABCG8 (2p21) 2p24.2 1.8 1 Lith 9 17 54.5
NR1I2 (3q13.3) 3q12.3 2.1 2 Lith 14 16 42.0
LCAT (16q22.1) 16q23.1 1.8 1 Lith 11 8 58.0
CCKAR (4p15.2); PPARGC1A (4p15.2); LRPAP1 (4p16.3) 4p15.3 1.6 1 Lith 13 5 30.0
SLC22A1 (6q25.3) 6q26 1.4 2 Lith 3 17 3.5

a Lammert et al. 2001, 2002; Paigen and Carey 2002; Lyons et al. 2003; Wittenburg et al. 2003; Mouse Genome Informatics
Database.

b Near the marker regions of interest in this study and/or the positional candidate genes identified by mouse models; the human
cytogenetic band information is provided within parentheses after the gene symbols (UCSC Genome Browser). TNFRSF1B p tumor
necrosis factor receptor subfamily, member 1B, or TNFR2; SHP p small heterodimer partner (NROB2 p nuclear receptor subfamily
0, group B, member 2); SCP2 p sterol carrier protein 2 [MIM 184755]; APOB p apolipoprotein B [MIM 107730]; POMC p
proopiomelanocortin [MIM 176830]; ABCG5 p ATP-binding cassette, subfamily G, member 5 [MIM 605459]; ABCG8 p ATP-
binding cassette, subfamily G, member 8 [MIM 605460]; NR1I2 p nuclear receptor subfamily 1, group I, member 2 (PXR p
pregnane X receptor); LCAT p lecithin-cholesterol acyltransferase [MIM 606967]; CCKAR p cholecystokinin receptor; PPARGC1A
p peroxisome proliferator-activated receptor-g, coactivator 1, a [MIM 604517]; LRPAP1 p LDL-related protein-associated protein
1; SLC22A1 p solute carrier family 22 (organic cation transporter), member 1 [MIM 602607].

c Genetic locations prioritized by the strength of evidence of linkage in our data (set 1 and set 2).
d The Lith 9 location (at 54.5 cM on mouse chromosome 17) is homologous to human chromosome 2p21, and the candidate

genes at this location are ABCG5 and ABCG8; APOB and POMC are located at 2–4 cM on mouse chromosome 12, but their
homologous regions are 2p24.1 and 2p23.3 on human chromosome 2, respectively.

findings, in the present study, only the linkage finding
on chromosome 10 continues to exhibit suggestive evi-
dence of linkage to clinical GBD, but the evidence of
linkage at the other two regions was found to be very
weak (D6S1035 [LOD p 0.5] and near D8S270 [LOD
p 0.7]). However, the marker D6S1035 region was
found to be potentially linked to both clinical and total
GBD in the sub–data set containing nondiabetic indi-
viduals only. In addition to the new CIDR marker data,
a potential explanation of the discrepancies between the
above-discussed preliminary findings and current find-
ings is the expanded population (i.e., the sample size of
the present study is almost double that of the preliminary
study).

Also, some other genetic findings of GBD in the pre-
sent study need further explanations. Previous studies,
including our own, using family data for the genetics of
symptomatic GDB suggested that ∼25%–44% of vari-
ation in symptomatic GBD is attributable to genetic fac-
tors (Duggirala et al. 1999b; Nakeeb et al. 2002; Katsika
et al. 2005). Although the present findings add further
strength to such observations, the heritability estimated
in this study for symptomatic GBD is high (e.g., 64%
in the total data) (table 2). However, it should be noted
that heritability estimates are population sample–specific
and can be influenced by such factors as study popu-
lation, design, ascertainment criteria, and the covariates

considered for the analysis. All of these factors could
have influenced the observed heritability of symptomatic
GBD in our population. In regard to the differences in
linkage profiles across our data sets, overall, the symp-
tomatic GBD appears to be informative for genetic anal-
ysis in both total and nondiabetic individuals–only data
sets, perhaps because of the severe nature of the symp-
tomatic GBD. There appear to be potential genetic fac-
tors that could determine gallstones to become symp-
tomatic after their formation in the gallbladder. Since
total GBD is highly heritable in the nondiabetic data set
(53%) compared with total GBD in the total sample
(26%) and since several potential or suggestive linkage
signals are present in the nondiabetic sub–data set with
total GBD information, despite the reduced sample size,
it appears that some unknown mechanisms (e.g., dia-
betes duration and gallbladder motility problems) that
are unique to the diabetic environment are interacting
with or masking the influences of the genetic factors.

In consideration of our present findings of GBD, it is
apparent that a complex genetic architecture underlies
the phenotypic expression of GBD. As Lee (2004) suc-
cinctly states, “the single most important way for the
body to get rid of excess cholesterol is the secretion of
bile acids and cholesterol into bile.” Our study localized
two major susceptibility loci for clinical GBD that could
have strong functional relevance to the defects related
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to the mechanism of supersaturation of bile with cho-
lesterol. In addition, our study provides potential evi-
dence of genetic factors that could influence other ab-
normalities of the hepatobiliary system, such as hypo-
motility of the gallbladder and cholesterol nucleation. It
is reassuring to note that several of our linkage findings,
including the major ones on chromosome 1p, appear to
overlap with the positions of the Lith loci that have been
reported to contribute to cholesterol gallstone formation
in mice. Also evident from our study is the overlapping
of some of the present linkage findings with those re-
ported by other studies that relate to various conditions
that occur with GBD, including obesity and diabetes.

In summary, we performed a genomewide search to
localize susceptibility genes for GBD in Mexican Amer-
icans and found strong evidence of the possible existence
of two novel susceptibility loci on chromosome 1p that
influence variation in clinical GBD. To our knowledge,
this is the first report of major genetic determinants of
GBD in human populations. Relatively strong and/or
potential evidence of linkage to GBD was also found at
several genetic locations on chromosomes 1q, 2p, 3q,
4p, 8p, 9p, 10p, 11q, and 16q. Confirmation of our
results in other populations would strengthen our link-
age findings. We plan to screen the strong positional
candidate genes, such as SHP1 and TNFR2, on chro-
mosome 1p, to identify potential functional variant(s)
that may relate to our linkage findings. Given the epi-
demic of obesity in both developed and developing
countries, the prevalence of obesity-related comorbid-
ities such as cholelithiasis is expected to become increas-
ingly burdensome. Our findings may pave the way for
prevention and treatment of GBD.
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Hsueh WC, Göring HH, Blangero J, Mitchell BD (2001a) Replication
of linkage to quantitative trait loci: variation in location and mag-
nitude of the lod score. Genet Epidemiol Suppl 21:S473–S478

Hsueh WC, Mitchell BD, Schneider JL, St Jean PL, Pollin TI, Ehm
MG, Wagner MJ, Burns DK, Sakul H, Bell CJ, Shuldiner AR (2001b)
Genome-wide scan of obesity in the Old Order Amish. J Clin En-
docrinol Metab 86:1199–1205

Huertas-Vazquez A, del Rincon JP, Canizales-Quinteros S, Riba L,
Vega-Hernandez G, Ramirez-Jimenez S, Auron-Gomez M, Gomez-
Perez FJ, Aguilar-Salinas CA, Tusie-Luna MT (2004) Contribution
of chromosome 1q21-q23 to familial combined hyperlipidemia in
Mexican families. Ann Hum Genet 68:419–427

Hung CC, Farooqi IS, Ong K, Luan J, Keogh JM, Pembrey M, Yeo
GS, Dunger D, Wareham NJ, O’Rahilly S (2003) Contribution of
variants in the small heterodimer partner gene to birth weight, ad-
iposity, and insulin levels: mutational analysis and association stud-
ies in multiple populations. Diabetes 52:1288–1291

Hunt SC, Hopkins PN, Bulka K, McDermott MT, Thorne TL, Wardell

BB, Bowen BR, Ballinger DG, Skolnick MH, Samuels ME (2000)
Genetic localization to chromosome 1p32 of the third locus for
familial hypercholesterolemia in a Utah kindred. Arterioscler
Thromb Vasc Biol 20:1089–1093

Jiang ZY, Han TQ, Suo GJ, Feng DX, Chen S, Cai XX, Jiang ZH,
Shang J, Zhang Y, Jiang Y, Zhang SD (2004) Polymorphisms at
cholesterol 7a-hydroxylase, apolipoproteins B and E and low density
lipoprotein receptor genes in patients with gallbladder stone disease.
World J Gastroenterol 10:1508–1512

Juvonen T, Kervinen K, Kairalouma MI, Lajunen LHJ, Kesäniemi YA
(1993) Gallstone cholesterol content is related to apolipoprotein E
polymorphism. Gastroenterology 104:1806–1813

Katsika D, Grijbovski A, Einarsson C, Lammert F, Lichtenstein P,
Marschall H-U (2005) Genetic and environmental influences on
symptomatic gallstone disease: a Swedish study of 43,141 twin pairs.
Hepatology 41:1138–1143

Kerr TA, Saeki S, Schneider M, Schaefer K, Berdy S, Redder T, Shan
B, Russell DW, Schwarz M (2002) Loss of nuclear receptor SHP
impairs but does not eliminate negative feedback regulation of bile
acid synthesis. Dev Cell 2:713–720

Kesaniemi YA, Koskenvuo M, Vuoristo, Mittinen TA (1989) Biliary
lipid composition in monozygotic and dizygotic pairs of twins. Gut
30:1750–1756

Khanuja B, Cheah YC, Hunt M, Nishina PM, Wang DQ, Chen HW,
Billheimer JT, Carey MC, Paigen B (1995) Lith1, a major gene af-
fecting cholesterol gallstone formation among inbred strains of mice.
Proc Natl Acad Sci USA 92:7729–7733

Kosters A, Jirsa M, Groen AK (2003) Genetic background of choles-
terol gallstone disease. Biochim Biophys Acta 1637:1–19

Lammert F, Carey MC, Paigen B (2001) Chromosomal organization
of candidate genes involved in cholesterol gallstone formation: a
murine gallstone map. Gastroenterology 120:221–238

Lammert F, Wang DQ, Wittenberg H, Bouchard G, Hillebrandt S,
Taenzler B, Carey MC, Paigen B (2002) Lith genes control mucin
accumulation, cholesterol crystallization, and gallstone formation in
A/J and AKR/J inbred mice. Hepatology 36:1145–1154

Lander ES, Green P (1987) Construction of multilocus genetic linkage
maps in humans. Proc Natl Acad Sci USA 84:2363–2367

Lander E, Kruglyak L (1995) Genetic dissection of complex traits:
guidelines for interpreting and reporting linkage results. Nat Genet
11:241–247

Langefeld CD, Wagenknecht LE, Rotter JI, Williams AH, Hokanson
JE, Saad MF, Bowden DW, Haffner S, Norris JM, Rich SS, Mitchell
BD (2004) Linkage of the metabolic syndrome to 1q23-q31 in His-
panic families: the Insulin Resistance Atherosclerosis Study Family
Study. Diabetes 53:1170–1174

Lawrence L, Hall MJ (1999) 1997 summary: National Hospital Dis-
charge Survey. Adv Data 308:1–16

Lee S (2004) Gallstones: how do we translate an old story into future
therapy? Nat Clin Pract Gastroenterol Hepatol 1:2–3

Leitzmann MF, Rimm EB, Willet WC, Spiegelman D, Grodstein F,
Stampfer MJ, Colditz GA (1999) Recreational physical activity and
the risk of cholycystectomy in women. N Engl J Med 341:777–784

Lindsay RS, Funahashi T, Krakoff J, Matsuzawa Y, Tanaka S, Kobes
S, Bennett PH, Tataranni PA, Knowler WC, Hanson RL (2003)
Genome-wide linkage analysis of serum adiponectin in the Pima
Indian population. Diabetes 52:2419–2425

Liu YJ, Xu FH, Shen H, Liu YZ, Deng HY, Zhao LJ, Huang QY,
Dvornyk V, Conway T, Davies KM, Li JL, Recker RR, Deng HW
(2004) A follow-up linkage study for quantitative trait loci contrib-
uting to obesity-related phenotypes. J Clin Endocrinol Metab 89:
875–882

Loos RJ, Bouchard C (2003) Obesity: is it a genetic disorder? J Intern
Med 254:401–425

Lyons MA, Korstanje R, Li R, Sheehan SM, Walsh KA, Rollins JA,
Carey MC, Paigen B, Churchill GA (2005) Single and interacting



www.ajhg.org Puppala et al.: Major Loci for Gallbladder Disease 391

QTLs for cholesterol gallstones revealed in an intercross between
mouse strains NZB and SM. Mamm Genome 16:152–163

Lyons MA, Wittenburg H, Li R, Walsh KA, Leonard MR, Churchill
GA, Carey MC, Paigen B (2003) New quantitative trait loci that
contribute to cholesterol gallstone formation detected in an inter-
cross of CAST/Ei and 129S1/SvImJ inbred mice. Physiol Genomics
14:225–239

MacDonald FR, Cooperberg PL, Cohen MM (1981) The WES triad:
a specific sonographic sign of gallstones in the contracted gallblad-
der. Gastrointest Radiol 6:39–41

Mahaney MC, Almasy L, Rainwater DL, VandeBerg JL, Cole SA,
Hixson JE, Blangero J, MacCluer JW (2003) A quantitative trait
locus on chromosome 16q influences variation in plasma HDL-C
levels in Mexican Americans. Arterioscler Thromb Vasc Biol 23:
339–345

Matise TC, Perlin M, Chakravarti A (1994) Automated construction
of genetic linkage maps using an expert system (MultiMap): a hu-
man genome linkage map. Nat Genet 6:384–390

Maurer KJ, Ihrig MM, Rogers AB, Ng V, Bouchard G, Leonard MR,
Carey MC, Fox JG (2005) Identification of cholelithogenic ente-
rohepatic helicobacter species and their role in murine cholesterol
gallstone formation. Gastroenterology 128:1023–1033

McPeek MS, Sun L (2000) Statistical tests for detection of misspecified
relationships by use of genome-screen data. Am J Hum Genet 66:
1076–1094

Mendell NR, Elston RC (1974) Multifactorial qualitative traits: genetic
analysis and prediction of recurrence risks. Biometrics 30:41–57

Méndez-Sánchez N, Cardenas-Vazquez R, Ponciano-Rodriguez G,
Uribe M (1996) Pathophysiology of cholesterol gallstone disease.
Arch Med Res 27:433–441

Méndez-Sánchez N, Chavez-Tapia NC, Motola-Kuba D, Sanchez-Lara
K, Ponciano-Rodriguez G, Baptista H, Ramos MH, Uribe M (2005)
Metabolic syndrome as a risk factor for gallstone disease. World J
Gastroenterol 11:1653–1657

Méndez-Sánchez N, King-Martinez AC, Ramos MH, Pichardo-Bahena
R, Uribe M (2004) The Amerindian’s genes in the Mexican popu-
lation are associated with development of gallstone disease. Am J
Gastroenterol 99:2166–2170

Misciagna G, Leoci C, Guerra V, Chiloiro M, Elba S, Petruzzi J, Mossa
A, Noviello MR, Coviello A, Minutolo MC, Mangini V, Messa C,
Cavallini A, De Michele G, Giorgio I (1996) Epidemiology of cho-
lelithiasis in southern Italy. Part II: risk factors. Eur J Gastroenterol
Hepatol 8:585–593

Moschetta A, Bookout AL, Mangelsdorf DJ (2004) Prevention of cho-
lesterol gallstone disease by FXR agonists in a mouse model. Nat
Med 10:1352–1358

Nakeeb A, Comuzzie AG, Martin L, Sonnenberg GE, Swartz-Basile
D, Kissebah AH, Pitt HA (2002) Gallstones: genetics versus envi-
ronment. Ann Surg 235:842–849

Ng MC, So WY, Lam VK, Cockram CS, Bell GI, Cox NJ, Chan JC
(2004) Genome-wide scan for metabolic syndrome and related quan-
titative traits in Hong Kong Chinese and confirmation of a suscep-
tibility locus on chromosome 1q21-q25. Diabetes 53:2676–2683

Nishigori H, Tomura H, Tonooka N, Kanamori M, Yamada S, Sho
K, Inoue I, Kikuchi N, Onigata K, Kojima I, Kohama T, Yamagata
K, Yang Q, Matsuzawa Y, Miki T, Seino S, Kim MY, Choi HS, Lee
YK, Moore DD, Takeda J (2001) Mutations in the small heterodimer
partner gene are associated with mild obesity in Japanese subjects.
Proc Natl Acad Sci USA 98:575–580

Paigen B, Carey MC (2002) Gallstones. In: King RA, Rotter JI, Mo-
tulsky AG (eds) The genetic basis of common diseases, 2nd ed.
Oxford University Press, Oxford, United Kingdom, pp 298–335

Paigen B, Schork NJ, Svenson KL, Cheah YC, Mu JL, Lammert F,
Wang DQ, Bouchard G, Carey MC (2000) Quantitative trait loci
mapping for cholesterol gallstones in AKR/J and C57L/J strains of
mice. Physiol Genomics 4:59–65

Pajukanta P, Allayee H, Krass KL, Kuraishy A, Soro A, Lilja HE, Mar
R, Taskinen MR, Nuotio I, Laakso M, Rotter JI, de Bruin TW,
Cantor RM, Lusis AJ, Peltonen L (2003) Combined analysis of
genome scans of Dutch and Finnish families reveals a susceptibility
locus for high-density lipoprotein cholesterol on chromosome 16q.
Am J Hum Genet 72:903–917

Pajukanta P, Nuotio I, Terwilliger JD, Porkka KV, Ylitalo K, Pihla-
jamaki J, Suomalainen AJ, Syvanen AC, Lehtimaki T, Viikari JS,
Laakso M, Taskinen MR, Ehnholm C, Peltonen L (1998) Linkage
of familial combined hyperlipidaemia to chromosome 1q21-q23.
Nat Genet 18:369–373

Perusse L, Chagnon YC, Weisnagel SJ, Rankinen T, Snyder E, Sands
J, Bouchard C (2001) The human obesity gene map: the 2000 up-
date. Obes Res 9:135–169

Platte P, Papanicolaou GJ, Johnston J, Klein CM, Doheny KF, Pugh
EW, Roy-Gagnon MH, Stunkard AJ, Francomano CA, Wilson AF
(2003) A study of linkage and association of body mass index in
the Old Order Amish. Am J Med Genet C Semin Med Genet 121:
71–80

Pomeranz IS, Shaffer EA (1985) Abnormal gallbladder emptying in a
subgroup of patients with gallstone. Gastroenterology 88:787–791

Portincasa P, Moschetta A, Calamita G, Margari A, Palasciano G
(2003) Pathobiology of cholesterol gallstone disease: from equilib-
rium ternary phase diagram to agents preventing cholesterol crys-
tallization and stone formation. Curr Drug Targets Immune Endocr
Metabol Disord 3:67–81

Portincasa P, Stolk MFJ, van Erpecum KJ, Palasciano G, van Berge-
Henegouwen GP (1995) Cholesterol gallstone formation in man and
potential treatments of the gallbladder motility defect. Scand J Gas-
troenterol Suppl 212:63–78

Puga I, Lainez B, Fernandez-Real JM, Buxade M, Broch M, Vendrell
J, Espel E (2005) A polymorphism in the 3′ untranslated region of
the gene for tumor necrosis factor receptor 2 modulates reporter
gene expression. Endocrinology 146:2210–2220

Reed DR, Nanthakumar E, North M, Bell C, Price RA (2001) A
genome-wide scan suggests a locus on chromosome 1q21-q23 con-
tributes to normal variation in plasma cholesterol concentration. J
Mol Med 79:262–269

Roberts SB, MacLean CJ, Neale MC, Eaves LJ, Kendler KS (1999)
Replication of linkage studies of complex traits: an examination of
variation in location estimates. Am J Hum Genet 65:876–884

Rosenthal TC, Siepel T, Zubler J, Horwitz M (1994) The use of ul-
trasonography to scan the abdomen of patients presenting for rou-
tine physical examinations. J Fam Pract 38:380–385

Rosmorduc O, Hermelin B, Boelle PY, Parc R, Taboury J, Poupon R
(2003) ABCB4 gene mutation-associated cholelithiasis in adults.
Gastroenterology 125:452–459

Ruhl CE, Everhart JE (2000) Association of diabetes, serum insulin,
and C-peptide with gallbladder disease. Hepatology 31:299–303

Rybicki FJ (2000) The WES sign. Radiology 214:881–882
Sahi T, Paffenbarger RS Jr, Hsieh CC, Lee IM (1998) Body mass index,

cigarette smoking, and other characteristics as predictors of self-
reported, physician diagnosed gall bladder disease in male college
alumni. Am J Epidemiol 147:644–651

Sandler RS, Everhart JE, Donowitz M, Adams E, Cronin K, Goodman
C, Gemmen E, Shah S, Rubin R (2002) The burden of selected
digestive diseases in the United States. Gastroenterology 122:1500–
1511

Sarin SK, Negi VS, Dewan R, Sasan S, Saraya A (1995) High familial
prevalence of gallstones in the first-degree relatives of gallstone pa-
tients. Hepatology 22:138–141

Schoonjans K, Auwerx J (2002) A sharper image of SHP. Nat Med 8:
789–791

Self SG, Liang K-Y (1987) Asymptotic properties of maximum like-
lihood estimators and likelihood ratio tests under nonstandard con-
ditions. J Am Stat Assoc 82:605–610



392 The American Journal of Human Genetics Volume 78 March 2006 www.ajhg.org

Silva CP, Pereira-Lima JC, Oliveira AG, Guerra JB, Marques DL, Sar-
manho L, Cabral MM, Queiroz DM (2003) Association of the pres-
ence of Helicobacter in gallbladder tissue with cholelithiasis and
cholecystitis. J Clin Microbiol 41:5615–5618

Sobel E, Lange K (1996) Descent graphs in pedigree analysis: appli-
cations to haplotyping, location scores, and marker-sharing statis-
tics. Am J Hum Genet 58:1323–1337

Sobel E, Papp JC, Lange K (2002) Detection and integration of ge-
notyping errors in statistical genetics. Am J Hum Genet 70:496–
508

Stone S, Abkevich V, Hunt SC, Gutin A, Russell DL, Neff CD, Riley
R, Frech GC, Hensel CH, Jammulapati S, Potter J, Sexton D, Tran
T, Gibbs D, Iliev D, Gress R, Bloomquist B, Amatruda J, Rae PM,
Adams TD, Skolnick MH, Shattuck D (2002) A major predisposi-
tion locus for severe obesity, at 4p15-p14. Am J Hum Genet 70:
1459–1468

Swidsinski A, Lee SP (2001) The role of bacteria in gallstone patho-
genesis. Front Biosci 6:E93–E103

Tsai CJ, Leitzmann MF, Willett WC, Giovannucci EL (2004) Pro-
spective study of abdominal adiposity and gallstone disease in US
men. Am J Clin Nutr 80:38–44

Varret M, Rabes JP, Saint-Jore B, Cenarro A, Marinoni JC, Civeira F,
Devillers M, Krempf M, Coulon M, Thiart R, Kotze MJ, Schmidt
H, Buzzi JC, Kostner GM, Bertolini S, Pocovi M, Rosa A, Farnier
M, Martinez M, Junien C, Boileau C (1999) A third major locus
for autosomal dominant hypercholesterolemia maps to 1p34.1-p32.
Am J Hum Genet 64:1378–1387

Wang DQ, Schmitz F, Kopin AS, Carey MC (2004) Targeted disruption
of the murine cholecystokinin-1 receptor promotes intestinal cho-
lesterol absorption and susceptibility to cholesterol cholelithiasis. J
Clin Invest 114:521–528

Weiss KM, Ferrell RE, Hanis CL (1984a) A New World syndrome of
metabolic diseases with genetic and evolutionary basis. Yearbook
Phys Anthropol 27:153–178

Weiss KM, Ferrell RE, Hanis CL, Styne PN (1984b) Genetics and
epidemiology of gallbladder disease in New World native peoples.
Am J Hum Genet 36:1259–1278

Wiltshire S, Frayling TM, Groves CJ, Levy JC, Hitman GA, Sampson
M, Walker M, Menzel S, Hattersley AT, Cardon LR, McCarthy MI
(2004) Evidence from a large UK family collection that genes influ-
encing age of onset of type 2 diabetes map to chromosome 12p and
to the MODY3/NIDDM2 locus on 12q24. Diabetes 53:855–860

Wittenburg H, Lyons MA, Li R, Churchill GA, Carey MC, Paigen B
(2003) FXR and ABCG5/ABCG8 as determinants of cholesterol
gallstone formation from quantitative trait locus mapping in mice.
Gastroenterology 125:868–881

World Health Organization (1999) Definition, diagnosis and classifi-
cation of diabetes mellitus and its complications: report of a WHO
consultation. Part I: diagnosis and classification of diabetes mellitus.
World Health Organization, Geneva

Xiang K, Wang Y, Zheng T, Shen K, Jia W, Li J, Lin X, Wu S, Zhang
G, Wang S, Lu H (2002) Genome-wide scan search for type 2 di-
abetes susceptibility loci in Chinese. Diabetes Suppl 51:A262

Yang CC, Sun SS, Lin CC, Kao A, Lee CC (2002) Evidence of impaired
gallbladder function in patients with non-insulin-dependentdiabetes
mellitus by quantitative cholescintigraphy. J Diabetes Complications
16:347–351

Zhu J, Han TQ, Chen S, Jiang Y, Zhang SD (2005) Gallbladder motor
function, plasma cholecystokinin and cholecystokinin receptor of
gallbladder in cholesterol stone patients. World J Gastroenterol 11:
1685–1689


	A Genomewide Search Finds Major Susceptibility Loci for Gallbladder Disease on Chromosome 1 in Mexican Americans
	Subjects and Methods
	SAFDGS
	Variance-Components Linkage Analysis

	Results
	Heritabilities
	Multipoint-Linkage Findings

	Discussion
	Acknowledgments
	References


